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Abstract 

 

To cross uncontrolled roadways, where no traffic-halting signal devices are present, pedestrians 

with visual impairments must rely on their other senses to detect oncoming vehicles and estimate 

the correct crossing interval in order to avoid potentially fatal collisions. To overcome the 

limitations of human auditory performance, which can be particularly impacted by weather or 

background noise, we develop an assisting tool called Acoussist, which relies on acoustic ranging 

to provide an additional layer of protection for pedestrian safety. The vision impaired can use the 

tool to double-confirm surrounding traffic conditions before they proceed through a non-signaled 

crosswalk. 

The Acoussist tool is composed of vehicle-mounted external speakers that emit acoustic chirps at 

a frequency range imperceptible by human ears, but detectable by smartphones operating the 

Acoussist app. This app would then communicate to the user when it is safe to cross the roadway. 

Several challenges exist when applying the acoustic ranging to traffic detection, including 

measuring multiple vehicles’ instant velocities and directions with the presence many of them who 

emit homogeneous signals simultaneously. We address these challenges by leveraging insights 

from formal analysis on received signals’ time-frequency (t-f) profiles. We implement a proof-of-

concept of Acoussist using commercial off-the-shelf (COTS) portable speakers and smartphones. 

Extensive in-field experiments have been conducted to validate the effectiveness of Acoussist in 

improving mobility for people with visual impairments. 

 

Keywords: Pedestrian safety, collision avoidance, acoustic ranging   



 

 

 

Chapter I: Introduction 

Motivation: According to the records provided by the World Health Organization in 2018, the 

global-wide visually impaired people are estimated at 2.2 billion [84]. How to navigate them to 

cross streets is a long-lasting topic. The state-of-art solution is to install the Accessible Pedestrian 

Signals (APS) at intersections or crossing sections to assist the visually impaired in determining 

when it is safe to cross. However, there are even more uncontrolled crosswalks where no traffic 

control (i.e., traffic signals or APS) is present. These common crossing types occur at non-

intersection or midblock locations where they may be marked or not. They typically exist in 

residential communities, local streets, suburban areas, etc. where sophisticated traffic 

infrastructures are too expensive to fully deploy around. In these road sections, the visually 

impaired have to mostly depend on themselves to judge the surrounding traffic condition and 

decide whether it is safe to proceed to the crosswalks. In practice, the pedestrian leverage hearing 

to discriminate between traffic sounds that are too far away to pose a hazard to crossing and those 

that are within close proximity. Nonetheless, hearing based judgment is not always reliable. 

Hearing capability varies from person to person; young people generally have more sensitive 

hearing than seniors. Besides, environmental conditions may affect traffic sounds. For example, 

rain and wind may enhance or distort sounds; snow can muffle sounds; background construction 

sounds or talking from people nearby may even overwhelm the traffic sounds. 

 

 
Figure 1. Some examples of uncontrolled crosswalks. 

This paper aims to develop a portable tool that assists pedestrians with vision impairments to cross 

uncontrolled streets. The tool alerts pedestrians with the presence of oncoming vehicles that may 

cause hazard. To achieve this goal, it is essential to figure out movement status of each vehicle 

nearby, characterized by, for example, its velocity relative to the pedestrian, direction of arrival 

(DoA), and its distance to the pedestrian. To measure these parameters, one possible solution is to 

use radar [68]. Due to its stringent requirements over the received signal quality [101, 122, 124], 

the existing radar applications mostly operate over licensed spectrum bands. For instance, Federal 

Communications Commission (FCC) designates the X band frequencies between 10.500-10.550 

GHz and the K band frequencies between 24.050-24.250 GHz for police radar gun. In our case, 

applicable radio frequencies the already over-crowded ISM bands. Besides, given that our problem 

requires the ranging distance up to 200 ft, the perceived signal-to-noise ratio (SNR) would be too 

low to achieve meaningful detection. Moreover, we need build our own transmitter or/and receiver 

by using radar techniques. In contrast, the proposed design can be implemented on commercial 

off-the-shelf (COTS) devices. 



 

 

 

 

LiDAR [4, 28, 92], which uses predominantly infrared light from lasers rather than radio waves, 

is another potential alternative. It has been widely used in autonomous vehicles to monitor 

surrounding environments to avoid traffic incidents. However, LiDAR is a technology that 

requires a powerful computation and storage capacity to handle the huge collected dataset. Its cost 

is another concern. 

 

Given the above analysis, our idea leverages acoustic ranging. It is competent for our 

implementation in the following aspects. First, acoustic signals can propagate around obstructions 

through diffraction on their edges or reflection from their surfaces. This capability supports 

measuring vehicles behind obstructions. Second, its performance does not depend on lighting 

conditions and is effective even in darkness. Third, we can easily customize transmission signals 

on commercial COTS speakers and process received signals in smartphones. We propose to utilize 

ultrasound signals ranging from 17 KHz to 19 KHz. To our knowledge, there is no application 

with wide deployment operating on this band. Thus, it is less likely to experience cross- application 

interference. Motivated by the above observations, we develop Acoussist, an acoustic based 

assisting tool for the visually impaired to cross uncontrolled streets. Acoussists consists of speakers 

that are mounted on the front of vehicles to emit ultrasonic chirps and an app running on the 

pedestrian’s smartphone for signal analysis. Whenever a pedestrian senses a clear street and tends 

to proceed to the crosswalk, she turns on the app to double-confirm her judgment. The app analyzes 

the received chirps to detect if any oncoming vehicle would cause potential collisions. If yes, an 

alert is generated. Then, the pedestrian should take precaution and wait at the curb until the street 

is clear. For vehicles operating in all-electric or hybrid mode, the chirps can be played by their 

warning sounds system1. For traditional combustion engine vehicles, chirps are proposed to emit 

from COTS portable speakers. While pedestrians are “stakeholders” in our scenario, drivers do not 

necessarily lack the motivation to install the speakers. Department of Public Safety (DPS) [21] 

regulates that a driver who fails to yield to the pedestrians with vision impairments (regardless of 

any reasons) is fully/partially liable for any injury caused to the pedestrian. As demonstrated in 

this work, a participatory vehicle can effectively alert a pedestrian regarding its presence. 

 

Challenges: Although the idea of acoustic ranging is not new, turning it into a tool for collision 

detection is faced with several unique challenges. 1) Vehicle velocity measurement with mutual 

interference: One of the key ingredients to decide if a vehicle causes potential hazard is to figure 

out its velocity relative to the pedestrian. A straightforward solution is to analyze the Doppler 

frequency shift of the received chirps at the receiver. This task is easy if only one vehicle is nearby. 

In our case, oftentimes several vehicles are present. Their emitted chirps overlap, rendering 

distinguishing among them an extremely challenging task, let alone analyzing the frequency shift 

for velocity measurement. 2) Dynamic multi-source localization: It is also indispensable to figure 

out the DoA of each vehicle. Acoustic multi-source localization has been studied in the domain of 

speaker tracking in video conferences [24, 63, 67], indoor localization [23], and noise 

identification [19]. Existing approaches either assume the number of sources are fixed and a prior 

known, or signals from different sources are of distinct frequency patterns. Thus, none of them is 

 
1 Many countries have approved legislation to enforce “quiet” vehicles install the warning sounds system, an array of 

external speakers that emit artificial engine sounds for pedestrians to be aware of their presence. For example, EU 

requires all new models of electric and hybrid vehicles developed and sold in EU to equip the system by July 2019 

[41]. 



 

 

 

applicable to our problem. It is also worth-mentioning a set of novel ranging-based applications, 

such as breathing pattern detection [13, 75, 118, 123, 125] and hand and finger gesture 

 
Figure 2. Illustration of three types of ranging. 

detection [51, 76, 93, 102, 119]. These applications can be classified as either type-I2 ranging or 

type-II ranging, while our system belongs to type-III ranging. For the former two types, the 

analysis is carried over target-reflected signals. For the latter type, the analysis is over target-

emitted signals. Thus, their design rationale and applied techniques are quite different. 

 

Our Approach: We find that the received samples associated with each acoustic source generate 

a series of pulses in the time-frequency (t-f) domain. Lining up these pulses produces a “t-f sweep 

line” that can identify the corresponding acoustic source due to the unique combination of its signal 

offset time and the moving speed. Our formal analysis reveals that the slope of each t-f sweep line 

is a function of the vehicle’s relative velocity. We thus address the first challenge by exploiting 

this relationship. To our best knowledge, no existing literature has provided any closed-form 

formula of a moving source’s t-f sweep line in the expression of its relative velocity, let alone 

leveraging the relationship for velocity estimation. We address the second challenge by developing 

a modified generalized cross correlation method, called MGCC. MGCC consists of three major 

components: 1) extracting the LoS transmission component from the received signal for each 

acoustic source, 2) applying the generalized cross correlation function over the extracted signals 

received by two microphones on the smartphone to obtain the time difference of arrival (TDoA), 

and 3) calculating the DoA for each vehicle based on its TDoA. Comparing with conventional 

GCC, which is incapable of dealing with association ambiguity caused by coexistence of multiple 

sources, the proposed MGCC avoids this issue by analyzing t-f profiles of each source extracted 

from the previous step. 

 

The processing flow of Acoussist is summarized in Figure 3. It consists of vehicle-side mounted 

external speakers that emit acoustic chirps ranging from 17 KHz to 19 KHz and a pedestrian-side 

detection app. To facilitate the multi-source localization, two microphones at the pedestrian’s 

smartphone are utilized. Upon receiving acoustic samples, Acoussist applies a high-pass filter to 

remove low-frequency components in the recorded samples. It then performs the short-time 

Fourier transform (STFT) over the de-noised samples. A t-f sweep line is identified for each 

acoustic source. It further estimates the relative velocity for each vehicle by analyzing the slope 

for each t-f sweep line. Following that, it measures the DoA of acoustic sources via the proposed 

 
2 By ranging, we mean localizing/detecting objects based on their reflected or emitted electromagnetic (EM) or 

acoustic signals. According to the relation among the target, transmitter, and receiver in a ranging system, we define 
the following three types of ranging. For type-I ranging, an EM/acoustic wave is emitted from a transmitter and reflects 

off the target the wave encounters. The signal is reflected back to the receiver that picks up the echoed signal. The 

transmitter and the receiver are collocated. For type-II ranging, the signal is also emitted from the transmitter, reflected 

by the target, and captured by the receiver. The only difference is that the transmitter and the receiver are located 

differently. They are either cooperative or not. For type-III ranging, the target is localized through the analysis over 

its own emitted signals. Thus, the target is also the transmitter. 

..
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MGCC method; its inputs are the t-f profiles from each acoustic source obtained from the previous 

step. By employing the geometric relations between the acoustic source and the pedestrian, it then 

calculates each vehicle’s moving velocity and its distance to the pedestrian. Finally, the app 

decides if a pedestrian is safe to proceed to the crosswalk by analyzing the relations among all 

derived movement parameters, and produces an alert if needed. 

 

 

As mentioned, Acoussist adopts the framework of type-III ranging that analyzes target’s self-

emitted signal for detection. If we adopt the other two types of ranging that utilizes target’s 

reflected signal, the ranging distance would be significantly reduced due to the high decay 

coefficient experienced by acoustic signals. As shown in our experiments, the signal is still 

detectable by a smartphone when the v-p distance is as long as 240 ft under type-III ranging, but 

it drops to 48 ft under type-I/-II ranging which is unsuitable for moving object collision detection. 

Besides, Acoussist works for smartphones with more than one microphone. Luckily, most of 

current smartphones meet this requirement. As a note, Apple equips their devices with even four 

embedded microphones since iPhone 7 released in 2016. 

 

The key contribution of this project is summarized as follows: 

• We develop an acoustic based collision detection system that assists pedestrians with vision 

impairments to perceive surrounding traffic conditions before crossing uncontrolled 

streets. It supplements the conventional hearing based solution. While collision avoidance 

systems for automobiles have been investigated for more than a decade, human-centered 

collision detection has rarely been studied. 

• We address unique challenges when applying acoustic ranging to collision detection. Two 

salient technical contributions have been made. First, we propose a novel t-f sweep line 

based analysis that derives vehicle’s relative velocity. With this basis, MGCC is developed 

to calculate vehicle’s DoA according to its TDoA with respect to the smartphone’s two 

mics. Both detection methods are capable of differentiating among multiple vehicles. 

• From a generalized point of view, we study a type-III homogeneous multi-source ranging 

problem that has rarely been investigated in prior ranging literature. 

• We implement Acoussist on COTS speakers and mobiles without involving any central 

server. We demonstrate the feasibility of Acoussist via extensive in-field testing. 

 

Clarifications: First, Acoussist does not intend to overwrite a pedestrian’s judgement; instead, it 

should be treated as an assisting tool that provides an added layer of protection for the visually 

impaired. That being said, if a conflict occurs between a pedestrian’s judgement and the detection 
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Figure 3. Acoussist system architecture. 



 

 

 

result, the pedestrian still holds the responsibility of decision making. A suggestive choice is to 

wait by the curb when either source indicates a potential collision. Second, Acoussist is designed 

to use at uncontrolled crosswalks existing in residential communities, local streets, and suburban 

areas, where there are common needs from the visually impaired for daily activities and commute. 

These venues generally impose relatively conservative vehicle speed limits. In an interview with 

five visually impaired students in our university, all of them claim that they would never consider 

crossing any less regulated road sections that allow 45 mph speed limit or higher on their own. 

Third, we stress that the functionality of Acoussist does not require all vehicles to participate. It 

can perform collision detection only to the participatory ones. In a worst case that no vehicle in 

the pedestrian’s vicinity opt-in, it degrades to the hearing-based judgment scenario. Therefore, 

Acoussist will not perform worse than the current solution. 

  



 

 

 

 

Chapter II: Overview and background 

2.1. Design Rationale 
 

The White Cane Laws give visually impaired pedestrians the right-of-way in crosswalks, whether 

or not they are marked [81]. The laws require drivers to stop and yield to the blind who is crossing 

the street. On the other hand, the visually impaired rely on themselves to judge if the street is clear 

and when to proceed to the crosswalk by mainly referring to hearing. Since hearing is not always 

reliable, for example, mislead by the background noise, the blind may wrongly judge the traffic 

condition and enter streets even there are oncoming vehicles within close proximity. To avoid this 

hazard situation, Acoussist senses surrounding traffic conditions and estimates whether there is 

sufficient time for nearby drivers to spot the pedestrian and then take reaction to stop cars. If not, 

an alert is generated at the pedestrian’s smartphone, keeping her from proceeding to the crosswalk. 

 

 
Figure 4. Design rationale of Acoussist. 

The design of Acoussist relies on a basic assumption that drivers obey the laws; for the collisions 

that are caused by careless driving are out of the scope of our discussion. Besides, there are some 

scenarios that people are using headphones/earphones listening to music or talking on the phone 

when crossing streets without care. They are not the focus of this work too. As shown in Figure 4, 

denote by 𝑑0 the distance between a vehicle and the crosswalk, when the pedestrian is first spotted 

entering the crosswalk. Then the driver takes reaction and stops the vehicle. The distance that the 

vehicle travels before complete stop is called stopping sight distance (SSD)[60]. It is a near worst-

case distance a driver needs to be able to see in order to have room to stop before colliding with 

something in the roadway. SSD is also one of several types of sight distance commonly used in 

road design. If d0 > SSD, i.e., the driver can stop the car before hitting into the pedestrian, the 

pedestrian can safely cross. Nonetheless, it is challenging for the pedestrian to measure 𝑑0 . 

Alternatively, we consider 𝑑𝑖, the v-p distance. Generally, 𝑑𝑖 ≈ 𝑑0 when the vehicle is faraway. 

For example, given 𝑑0 = 150 ft and the street width 30 ft, then 𝑑𝑖 ≤  √1502  +  152  = 150.7 ft. 

Thus, the pedestrian safety condition can be rewritten as 𝑑𝑖 > 𝑆𝑆𝐷. 

 

As discussed later, 𝑑𝑖 is a function of DoA of the vehicle to the pedestrian, denoted by θ𝑖, and SSD 

is a function of the vehicle's moving velocity, denoted by 𝑣𝑖
𝑎 . Besides,𝑣𝑖

𝑎  is dependent of θ𝑖 and 

the vehicle's velocity relative to the pedestrian, denoted by 𝑣𝑖.  Eventually, our problem to 

determine if 𝑑𝑖 > SSD is satisfied is converted to estimate the values of 𝑣𝑖, θ𝑖 , 𝑣𝑖
𝑎 , and 𝑑𝑖 . 

 



 

 

 

2.2. Acoussist Signal Design 
 

Acoussist uses external speakers to emit acoustic chirps periodically. As shown in Figure 5(a), a 

chirp’s frequency linearly sweeps from the minimum 𝑓𝑙  to the maximum 𝑓ℎ   over time. Chirp 

signals are widely used in radar applications for its capability of resolving multi-path propagation. 

In the time domain, the expression for one chirp is  

 

𝑠𝑐(𝑡) = 𝐴 cos (π
𝐵

𝑇
𝑡2 + 2π𝑓𝑙𝑡)                                                     (1) 

 

where A is the amplitude,  𝐵 = 𝑓ℎ − 𝑓𝑙 , 𝑡 ∈ (0, 𝑇] , and  𝑇  is the chirp duration. We choose a 

high frequency chirp ranging from 𝑓𝑙 = 17 KHz to  𝑓ℎ = 19  KHz. Such a range has been adopted 

by quite a few novel applications, such as as biometric sensing [87] and acoustic imaging [71].  

 

Although the frequency range of human hearing is generally considered from 20 Hz to 20 KHz, 

high frequency sounds must be much louder to be noticeable (including children and young adults) 

[91]. This is characterized by the absolute threshold of hearing (ATH), which refers to the 

minimum sound pressure that can be perceived in a quiet environment. According to [103], we 

depict in Figure 5(b) the ATH with respect to sound frequency. ATH increases sharply for 

frequencies over 10 KHz. In particular, human ears can detect sounds of 1 KHz at 0 dB sound 

pressure level (SPL), but above 75 dB SPL for sound beyond 17 KHz, which has about 10,000 

fold amplitude increase. In our implementation, the chirp signal is played at 69.3 dB and thus 

hardly perceptible by human hearing. 

 
Figure 5. (a) Time-frequency domain representation of the chirp signal. (b) Human hearing threshold. 

 
Figure 6. Frequency spreading of different background noises. 

 

Another concern of applying acoustic ranging is that the signal may be polluted by background 

noise in outdoor environments. We extract some recordings for commonly seen outdoor noise from 

the well acknowledged dataset provided by the Google Audioset [36] and analyze their spectrum 
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distribution. We find in Figure 6 that the background noise mainly concentrates on the lower-end 

of the frequency, mostly lower than 10 KHz. As our chirp signals are above 17 KHz, there is a 

clear gap between these two. By applying a high-pass filter to the received signal can easily filter 

out background noise. 

 

The chirp duration and the separation between two consecutive chirps impact the overall 

performance of Acoussist. Too short a chirp will cause blurs in t-f profiles of received signals. 

Also, the chirp separation should be large enough to ensure that the main reflected signals of the 

current chirp are received before the next chirp is transmitted. However, too long a chirp duration 

or the separation will add delay to the system. As examined in 5.2, we found empirically that a 

duration of 500 ms and a separation of 125 ms represent a good tradeoff. 

 

 

 

  



 

 

 

Chapter III: Multi-Vehicle Signal Characterization 

In this section, we model the received signal with the presence of multiple vehicles3. The insight 

that we develop from this model guides the design of different modules of Acoussist.  As 

surrounding objects, such as buildings and trees, reflect acoustic signals, a chirp emitted from 

vehicle 𝑠𝑖 arrives at a microphone 𝑟𝑚 from multiple paths. Denote by 𝑑𝑖,𝑚
𝑘  the length of the 𝑘-th 

path associated with 𝑠𝑖and 𝑟𝑚. 𝑣𝑖 is v-p relative speed. 𝑣𝑎 is the speed of acoustic signals, which 

is considered as 340 m/s in our system. Let ϕ𝑖,𝑘  be the angle between the DoA of the k-th path and 

the line-of-sight (LoS) path respect to mic 𝑟𝑚.  Following [110],  the corresponding time-dependent 

signal propagation delay is calculated by 

 

τ𝑖,𝑚
𝑘 (𝑡) =

𝑑𝑖,𝑚
𝑘 − 𝑣𝑖 cos(ϕ𝑖,𝑘) 𝑡

𝑣𝑎
. 

Let 𝑎𝑖,𝑚
𝑘 (𝑡) be the attenuation experienced by the acoustic signal transmitted via the k-th path.  

Then, the aggregated time-domain channel response between 𝑠𝑖 and 𝑟𝑚 is expressed by  

  

ℎ𝑖,𝑚(τ, 𝑡) = ∑ 𝑎𝑖,𝑚
𝑘 (𝑡)δ (τ − τ𝑖,𝑚

𝑘 (𝑡))

𝐾

𝑘=1

 

  

i.e., the accumulated pulses arriving at different propagation delays. Given a particular time 

instance t, the source signal (1) can be rewritten as 𝑠𝑐(𝑡) = 𝐴 cos(2π𝑓𝑡𝑡),  in which 𝑓𝑡 =
d(π

𝐵

𝑇
𝑡2+2π𝑓𝑙𝑡)

2πd𝑡
=

𝐵

𝑇
𝑡 + 𝑓𝑙 . Then, the time-domain expression for mic 𝑟𝑚  received signal coming 

from vehicle 𝑠𝑖 is 

𝑦𝑖,𝑚(τ, 𝑡) = ∑ 𝐴𝑎𝑖,𝑚
𝑘 (𝑡) cos (2π𝑓𝑡 (𝑡 − τ𝑖,𝑚

𝑘 (𝑡)))

𝐾

𝑘=1

 

= ∑ 𝐴𝑎𝑖,𝑚
𝑘 (𝑡) cos (2π𝑓𝑡 (1 +

𝑣𝑖 cos(ϕ𝑖,𝑘)

𝑣𝑎
) 𝑡 −

2π𝑓𝑡𝑑𝑖,𝑚
𝑘

𝑣𝑎
)

𝐾

𝑘=1

. 

 

By applying the continuous Fourier transformation over 𝑦𝑖,𝑚(τ, 𝑡), its t-f representation is 

 

𝑌𝑖,𝑚(𝑓, 𝑡) =
𝐴

2
∑

𝑎𝑖,𝑚
𝑘 (𝑡)𝑣𝑎

𝑣𝑎 + 𝑣𝑖 cos ϕ𝑖,𝑘

𝐾

𝑘=1

𝑒
−𝑗2π𝑓

𝑑𝑖,𝑚
𝑘

𝑣𝑎+𝑣𝑖 cos ϕ𝑖,𝑘

× [δ (𝑓 − 𝑓𝑡

𝑣𝑎 + 𝑣𝑖 cos ϕ𝑖,𝑘

𝑣𝑎
) + δ (𝑓 + 𝑓𝑡

𝑣𝑎 + 𝑣𝑖 cos ϕ𝑖,𝑘

𝑣𝑎
)] . 

 

Then, the t-f representation of the aggregated received signal from all N vehicles at mic 𝑟𝑚 is 

written as 

 

 
3 In this paper, we use ``vehicle'' and ``source'' interchangeably without causing confusion. 



 

 

 

𝑌𝑚(𝑓, 𝑡) =
𝐴

2
∑ ∑

𝑎𝑖,𝑚
𝑘 (𝑡)𝑣𝑎

𝑣𝑎+𝑣𝑖 cos ϕ𝑖,𝑘

𝐾
𝑘=1 𝑒

−𝑗2π𝑓
𝑑𝑖,𝑚

𝑘

𝑣𝑎+𝑣𝑖 cos ϕ𝑖,𝑘𝑁
𝑖=1 × [δ (𝑓 − (

𝐵

𝑇
𝑡 + 𝑓𝑙)

𝑣𝑎+𝑣𝑖 cos ϕ𝑖,𝑘

𝑣𝑎
) +

δ (𝑓 + (
𝐵

𝑇
𝑡 + 𝑓𝑙)

𝑣𝑎+𝑣𝑖 cos ϕ𝑖,𝑘

𝑣𝑎
)].                                                   (2) 

 

Figure 7 depicts the t-f profile of the received signal 𝑌𝑚(𝑓, 𝑡) at a microphone when three vehicles 

are present, with their relative velocities 𝑣𝑖’s at 0 mph, 20 mph, and -20 mph, respectively. The 

darker part in this heat map indicates the components of large power. 

 

 
Figure 7. T-F profile of the received signal with the presence of three vehicles. 

 

Insight: We can tell from (2) that the t-f profile of received samples consist of a series of impulses 

that exist when the corresponding 𝑓  and 𝑡  satisfy a set of linear equations 𝑓 = (
𝐵

𝑇
𝑡 +

𝑓𝑙)
𝑣𝑎+𝑣𝑖 cos ϕ𝑖,𝑘

𝑣𝑎
(𝑘 ∈ {1, ⋯ , 𝐾}). Besides, according to [11], 𝑎𝑖,𝑚

𝑘 (𝑡) ∝ 𝑒−γ𝑑𝑖,𝑚
𝑘 (𝑡)  where γ is the 

acoustic amplitude decay coefficient. In the air propagation environment, γ  is at least 40.3 

dB/100m when the acoustic signal’s frequencies are between [17 KHz, 19 KHz] [116]. Thus, the 

signals coming from the LoS transmission path (with index k=1) out-weight other components 

from the rest paths. This is also another benefit of employing acoustic signals rather than radio 

signals. It is more convenient to extract LoS component from received signals that are mixed with 

multi-path transmissions. Each ``line’’ in Figure 7 can be specified by  
 

𝑣𝑎+𝑣𝑖 cos ϕ𝑖,1

𝑣𝑎
= (

𝐵

𝑇
𝑡 + 𝑓𝑙)

𝑣𝑎+𝑣𝑖

𝑣𝑎
                                                 (3) 

 

as 𝜙𝑖,1 = 0. We call such a line as a t-f sweep line. As shown in Figure 7, each vehicle corresponds 

to a unique t-f sweep line, due to its unique combination of 𝑣𝑖 and the chirp signal offset time. 

Therefore, the number of different t-f sweep lines that a mic detects implies the number vehicles 

within its proximity. More importantly, we also notice that the slope of a line contains the 

information of 𝑣𝑖. Therefore, we are able to infer the number of nearby vehicles and their relative 

velocities by analyzing t-f profile of received signals. 

 

While the t-f signal analysis is a common approach for target tracking in a radar system, no existing 

work has tried to establish an explicit relation between the received signal’s t-f sweep line and the 

source relative velocity. Such a relation enables velocity estimation when multiple sources with 

homogeneous signals are present. As discussed later, the analysis also lays the basis for the DoA 

measurement module. One reason that this idea has not been explored previously is because the 

generalized problem, type-III homogeneous multi-source ranging, is hardly observed in any other 

real-world ranging-based applications. For example, speaker localization [24, 63, 67] and noise 



 

 

 

identification [19] can be classified as type-III heterogeneous multi-source ranging. Radio-based 

indoor localization [14] can be treated as type-III single-source ranging. Radio-based breathing 

pattern detection [2], sleep monitoring [64], gesture detection [114], and radar guns all belong to 

type-I ranging or type-II ranging.  
 

  
 



 

 

 

Chapter IV: Details of Acoussist 

Next, we discuss the design details of Acoussist’s modules and describe how they interact to 

perform multi-vehicle detection. 

 

4.1. Measurement of Relative Velocity 
 

The objective of this module is to estimate each vehicle’s velocity relative to the pedestrian, 𝑣𝑖 . 
A straightforward solution is to analyze the Doppler frequency shift of the received chirps at the 

receiver. This task is easy if only one source is nearby or source signals are heterogeneous, e.g., 

different combinations of frequency components. In our case, oftentimes several vehicles are 

present. Additionally, they emit homogeneous chirps. These chirps overlap at the receiver, 

rendering distinguishing among them an extremely challenging task, let alone analyzing the 

frequency shift for velocity measurement. To address this issue, in the previous section, we 

formulate the received signal into a generalized expression that quantifies the effect of source 

movements by jointly characterizing the received signal’s time and frequency properties. More 

importantly, we model the t-f profile of a source as a closed-form expression of its relative velocity.  

Specifically, the slope of a t-f sweep line, denoted as κ, is unique and dependent of 𝑣𝑖, i.e., κ =
𝐵

𝑇

𝑣𝑎+𝑣𝑖

𝑣𝑎
. Hence, 𝑣𝑖  is calculated as 𝑣𝑖 = 𝑣𝑎(κ𝑇/𝐵 − 1) . As 𝑣𝑎 , 𝑇 and 𝐵  are known values, the 

remaining task is to find out κ of each t-f sweep line.  

 
Figure 8. (a) Normalized amplitude of all frequency components in a window. (b) All detected peaks in the received signal’s t-f 

profile. 

The app takes the denoised-stream at runtime as input and continuously slides a window of short 

time-width over it to get t-f profile by applying short-time Fourier transform (STFT) at each 

window. Consider a sliding window indexed by l; the window size is Δ𝑡.  Figure 8(a) depicts all 

frequency components contained in this window. As a note, Figure 8(a) is actually a slice of Figure 

7 at window l. Each peak exists at the frequency 𝑓𝑖 = (
𝐵

𝑇
𝑡 + 𝑓𝑙)

𝑣𝑎+𝑣𝑖

𝑣𝑎
 with 𝑡 = 𝑙 ⋅ Δ𝑡. The rest 

components are the signals from multi-path propagation or ambient noise that may consist of sound 

of sudden wind or machinery in a construction site or their harmonics in the higher frequency 

range. We then identify all the peaks in window 𝑙 by applying the peak detection algorithm [8]. 

Denote (𝑙, 𝑓𝑖)  an index-frequency pair of window 𝑙 . We are able to identify three such pairs in 

Figure 8(a), indicating three detectable vehicles. 

 

Figure 8(b) plots all the index-frequency pairs obtained at all windows of the received signal’s t-f 

profile; each dot is associated with one pair. To extract the t-f sweep lines from a set of discrete 

dots, we employ the Hough transformation technique [6], which is a classic scheme in detecting 
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edges, including lines, circles and ellipses, from a digital image. In our scenario, by treating the 

collected index-frequency pairs as the entire dataset, the t-f sweep lines are then detected as the 

edges by applying Hough transmissions over the dataset. Since there are substantial prior 

discussions on Hough transformation, we omit its implementation details here. So far, we are able 

to extract the t-f sweep lines and thus the slope κ for each of them. Then the number of lines is 

exactly the number of detectable vehicles. Each relative velocity is computed by 𝑣𝑖 =
𝑣𝑎(κ𝑇/𝐵 − 1). 

 

One critical issue in STFT is to decide the frequency resolution (Δ𝑓) and time resolution, i.e., 

sliding window size (Δ𝑡). These two parameters determine whether frequency components close 

together can be separated and the time at which frequencies change. A properly selected set of Δ𝑓 

and Δ𝑡 produces concentrated, rather than blurred, t-f sweep lines, which are essential to measure 

relative velocity accurately. Suppose the microphone’s sampling rate is 64 KHz. Here, 64KHz is 

a conservative value. Many smartphones, such as Razer phone 2 and Pixel XL, even support a 

sampling rate of 192KHz. Δ𝑡  and Δ𝑓  are computed as Δ𝑡 = 𝑁/64𝐾𝐻𝑧  and Δ𝑓 = 64 KHz/N, 

respectively, where N is the number of samples taken from a window. To strike a balance between 

these two, N is set to 2048 in our system. Given the chirp duration as 500 ms, the time resolution 

Δ𝑡 = 2048/64 𝐾𝐻𝑧 =  32 ms is precise enough to capture the variance of received chirps in the 

time domain caused by multi-path propagation. Consider that most of vehicles are not traveling 

with speed lower than 10 mph, i.e., 4.5 m/s. According to (2), its spectrum offset is  𝑓𝑡
𝑣𝑖

𝑣𝑎
, which 

ranges from 225 Hz (𝑓𝑡 = 17KHz) to 251 Hz (𝑓𝑡 = 19 KHz). Thus, the frequency resolution Δ𝑓 =
 64 𝐾𝐻𝑧 /2048 = 31 Hz is satisfactory to measure the spectrum offset. 

 

4.2. Measurement of DoA 
 

This module estimates the vehicle’s DoA with respect to 

the pedestrian, 𝜃𝑖. As shown in Figure 9, it is the angle 

between the LoS transmission and the line connecting two 

mics on the phone. Its measurement is achieved by 

analyzing the time difference of arrival (TDoA), denoted 

by 𝜏𝑖 , at the two mics. Since the v-p distance is much 

larger than the inter-mic distance, denoted by 𝐷, 

LoS propagation paths to the two mics are deemed parallel 

with each other. Then θ𝑖  is calculated as θ𝑖 =

arccos (
τ𝑖𝑣𝑎

𝐷
). As 𝑣𝑎 and 𝐷 are are available values, the 

remaining task is to find out τ𝑖. The inter-distance of two 

microphones of a mobile phone is available in open source dataset like [37]. This value can be 

instantiated during the initiation of the app.  

 

A naive approach: It examines the inter-channel phase difference (ICPD) to derive DoA [16, 

127]. Specifically,  the ICPD observed by two mics can be expressed as 

 

𝜓𝑖(𝑓) = ∠
𝑌1(𝑓,𝑙)

𝑌2(𝑓,𝑙)
= 2𝜋𝑓𝜏𝑖 + 2𝜋𝑝𝑓                                                  (4) 

 

Figure 9.Illustration of vehicle DoA. 



 

 

 

where 𝑌𝑚(𝑓, 𝑙) (𝑚 = 1 𝑜𝑟 2) is the T-F representation of the signal received at mic 𝑟𝑚  under 

discrete time. he wrapping factor 𝑝𝑓  is a frequency-dependent integer and 2π𝑝𝑓  represents 

possible phase wrapping. If 𝑝𝑓 = 0 , then τ𝑖 is calculated by ∠
𝑌1(𝑓,𝑙1)

𝑌2(𝑓,𝑙2)
/2π𝑓 and thus our problem 

is solved. In theory, 𝑝𝑓 = 0 when 𝐷 is smaller than half the wavelength [16]. In our system, the 

longest wavelength is about 2cm (
340m/s

17KHz
). Its halve, i.e., 1cm, is apparently smaller than the inter-

mic distance for many smartphones, e.g., the ones with one mic located on bottom and the other 

on top. Therefore, the ICPD based TDOA measurement is unreliable in our case. 

 

The proposed approach: We start from a conventional approach, called generalized cross 

correlation (GCC), to identify TDoA [15, 113].  Consider a function 

 

𝑅(τ)   =  | ∑ ∑  

𝑓

  
𝑌1

∗(𝑓, 𝑙)𝑌2(𝑓, 𝑙)

|𝑌1(𝑓, 𝑙)𝑌2(𝑓, 𝑙)|
𝑒−𝑗2𝜋𝑓𝜏|

𝑙

 =  | ∑  

𝑓

∑ ∑  

𝑓

 𝑒−𝑗𝜓𝑖(𝑓) 𝑒−𝑗2𝜋𝑓𝜏|

𝑙

 

 

where 𝑌𝑚(𝑓, 𝑙) (𝑚 = 1 or 2) follows the definition above. 𝑌𝑚
∗ (𝑓, 𝑙) stands for the conjugate of 

𝑌𝑚(𝑓, 𝑙). ψ𝑖(𝑓, 𝑙) = 2π𝑓τ𝑖 is the phase difference between 𝑌1 𝑎𝑛𝑑 𝑌2. Ideally, 𝑅(τ) shows a peak 

at τ = τ𝑖. However, due to the presence of multiple vehicles, the strong interference from multiple 

acoustic sources generates multiple peaks, as shown in  Figure 10(a). 

 

 
Figure 10(a) Association ambiguity caused by multi-source and multi-path interference. (b) Eliminate association ambiguity by 

calculating GCC of LoS signals from a separated single source.                    

To avoid the association ambiguity in the conventional GCC approach, we adapt it to multi-source 

scenarios. Recall that in we are able to extract the discrete index-frequency pairs for each source 

𝑠𝑖 , and thus the t-f profile of the received signal from 𝑠𝑖 via the LoS path, denoted as 𝑌𝑖,𝑚,1(𝑓, 𝑙). 
Here, “1” means the index of the LoS path. Then, a modified GCC (MGCC) function that 

associated with a particular source 𝑠𝑖 is expressed as 

 

𝑅𝑖(τ) = |∑ ∑
𝑌𝑖,1,1

∗ (𝑓, 𝑙)𝑌𝑖,2,1(𝑓, 𝑙)

|𝑌𝑖,1,1(𝑓, 𝑙)𝑌𝑖,2,1(𝑓, 𝑙)|
𝑒−𝑗2𝜋𝑓𝜏

𝑓𝑙

| 

= |∑ ∑ 𝑒−𝑗𝜓𝑖(𝑓)𝑒−𝑗2𝜋𝑓𝜏
𝑓𝑙 |                                                             (5) 

    



 

 

 

Since 𝑌𝑖,1,1 and 𝑌𝑖,2,1 only contain the signals that are transmitted via the LoS paths from source 𝑠𝑖 

, there is only one peak at τ = τ𝑖 , as shown in  Figure 10(b). Thus, the TDoA τ𝑖 of source 𝑟𝑖 can 

be calculated by τ𝑖 = arg max 𝑅𝑖 (τ) 𝑖 ∈ [1, 𝑁] Then, θ𝑖 is derived accordingly. 

 

4.3. Measurement of Vehicle Velocity and V-P Distance 
 

Vehicle Velocity: The measurement of vehicle 𝑠𝑖 's 

velocity 𝑣𝑖
𝑎  relies on the estimation results of its relative 

velocity 𝑣𝑖  and DoA θ𝑖  derived in Section 4.1 and 4.2, 

respectively. Denote by 𝑣𝑖
𝑎(𝑡1)  and 𝑣𝑖

𝑎(𝑡2) the vehicle's 

instance velocities at 𝑡1  and 𝑡2 , respectively. Let δ𝑡 =
𝑡2 − 𝑡1  be the measurement interval. In the 

implementation, δ𝑡  is set to 500 ms. Thus, 𝑣𝑖
𝑎 (𝑡1)  and 

𝑣𝑖
𝑎(𝑡2) are deemed equal. As shown in Figure 11, denote 

by α the angle between the vehicle's moving direction 𝐴𝐵 

and the line connecting two mics 𝑂1𝑂2. Besides, let β be 

the angle between the vehicle's velocity 𝑣𝑖
𝑎  and its velocity 

relative to the pedestrian 𝑣𝑖. Then we have the following 

system of equations 

 

{
𝑣𝑖

𝑎(𝑡1) cos 𝛽 (𝑡1) = 𝑣𝑖(𝑡1),  𝑣𝑖
𝑎(𝑡2) cos 𝛽 (𝑡2) = 𝑣𝑖(𝑡2)

𝛼 + 𝛽(𝑡1) = 𝜃𝑖 (𝑡1),  𝛼 + 𝛽(𝑡2) = 𝜃𝑖(𝑡2),  𝑣𝑖
𝑎 (𝑡1) = 𝑣𝑖

𝑎(𝑡2)
 

 

 

The first two equations are from the relation between 𝑣𝑖
𝑎  and 𝑣𝑖. Regarding the third equation, 

θ(𝑡1) = α + ∠𝑂𝐴𝑂1 due to the application of exterior angle theorem in the triangle Δ𝐴𝑂𝑂1 in 

Figure 11. Similarly, the fourth equation holds. Since there are five variables (α, β(𝑡1), β(𝑡2), 

𝑣𝑖
𝑎(𝑡1), 𝑣𝑖

𝑎(𝑡2)) and five uncorrelated equations above, we can derive the closed form expression 

for 𝑣𝑖
𝑎(𝑡) as 

 

                          𝑣𝑖
𝑎(𝑡) = 𝑣𝑖(𝑡2) (cos (arctan (

cos(θ(𝑡1)−θ(𝑡2))−
𝑣𝑖(𝑡1)

𝑣𝑖(𝑡2)

sin(θ(𝑡1)−θ(𝑡2))
)))

−1

                                       (6) 

 

V-P Distance: The v-p distance at 𝑡, i.e., 𝑑𝑖(𝑡), is calculated based on the knowledge of 𝑣𝑖
𝑎(𝑡), 

θ𝑖(𝑡), and τ𝑖(𝑡) which are all known values by now. Consider two triangles Δ𝐴𝑂1𝐵 and Δ𝐴𝑂2𝐵 

in Figure 11. Since v-p distance is significantly larger than the inter-mic distance, vehicle's DoAs 

with respect to the two mics are deemed the same, denoted by θ𝑖(𝑡). Thus, ∠𝐴𝑂1𝐵 = θ𝑖(𝑡1) −
θ𝑖(𝑡2) and ∠𝐴𝑂2𝐵 = θ𝑖(𝑡1) − θ𝑖(𝑡2). Due to the law of cosines in trigonometry, we have the 

following relation 

 

                       {
cos(𝜃𝑖(𝑡1) − 𝜃𝑖(𝑡2)) =

𝑑𝑖
2(𝑡1)+𝑑𝑖

2(𝑡2)−(𝑣𝑖
𝑎Δ𝑡)

2

2𝑑𝑖(𝑡1)𝑑𝑖(𝑡2)

𝑐𝑜𝑠(𝜃𝑖(𝑡1) − 𝜃𝑖(𝑡2)) =
(𝑑𝑖(𝑡1)+𝑣𝑎𝜏𝑖(𝑡1))

2
+(𝑑𝑖(𝑡2)+𝑣𝑎𝜏𝑖(𝑡2))

2
 − (𝑣𝑖

𝑎Δ𝑡)
2

 

2(𝑑𝑖(𝑡1)+𝑣𝑎𝜏𝑖(𝑡1))(𝑑𝑖(𝑡2)+𝑣𝑎𝜏𝑖(𝑡2))

                     (7) 

Figure 11.Geometric relation illustration. 



 

 

 

 

 

which is a system of two quadratic equations of two variables, 𝑑𝑖(𝑡1) and 𝑑𝑖(𝑡2). Thus, it is not 

difficult to solve it by some existing libraries. In the implementation, we use the GSL [33] that 

provides a library to compute the root of polynomials. 

 

4.4. Piecing All Components Together 
 

The design rationale of Acoussist is to estimate whether nearby drivers have sufficient time to spot 

the blind pedestrian and stop their vehicles when the pedestrian tends to enter the crosswalk. As 

discussed, it is equivalent to have driver's SSD larger than the v-p distance 𝑑𝑖. In practice, we 

should further take into account the processing latency of the system, denoted by 𝑡𝑑𝑙. We thus 

adopt the following conservative pedestrian safety condition 

 

                                                                       𝑑𝑖 > SSD𝑖 + 𝑣𝑖
𝑎 × 𝑡𝑑𝑙 .                                                    (8) 

 

Acoussist generates an alarm as long as any detectable vehicle 𝑠𝑖  violates the above condition. In 

our implementation,  𝑡𝑑𝑙 is instantiated with a device-dependent value that is associated with 90% 

confidence level. To obtain this value, app runs on the smartphone dozens of times prior the usage. 

More details will be discussed in Section 5.2.  

 

Since 𝑑𝑖 and 𝑣𝑖
𝑎 are all known, the remaining task is to find out a particular vehicle 𝑖's SSD. As 

recommended by design standard of American Association of State Highway and Transportation 

Officials (AASHTO) [1], SSD is estimated by 

 

                                                      SSD = 1.47 × 𝑣𝑖
𝑎𝑡𝑝𝑟 + 1.075(𝑣𝑖

𝑎)2/𝑎                                          (9) 

 

where 𝑣𝑖
𝑎  is the instant vehicle velocity that is derived in Section 4.3. 𝑡𝑝𝑟  and 𝑎 stand for the 

driver's perception-reaction time and acceleration rate, respectively. AASHTO allows 2.5 seconds 

for 𝑡𝑝𝑟 and 11.2 ft/s2 for 𝑎 to accommodate approximately 90% of all drivers when confronted 

with simple to moderately complex road situations. SSD is the sum of two distances: 1) brake 

reaction distance (i.e., the distance traversed by the vehicle from the instant the driver sights an 

object necessitating a stop to the instant the brakes are applied); and 2) braking distance (i.e., the 

distance needed to stop the vehicle from the instant brake application begins). According to 

AASHTO, in the above expression for SSD, conservative parameters are used, including a 

generous amount of time given for the perception-reaction process, and a fairly low rate of 

deceleration, such that it allows a below-average driver to stop in time to avoid a collision in most 

cases. 

 

It is noteworthy that our system does not impose any requirement on the position/orientation of 

the phone during usage. Even though the calculation of DoA θ𝑖  is dependent on the phone 

orientation, the pedestrian safety condition is related to 𝑣𝑖
𝑎  and 𝑑𝑖  (8).As shown in (6) and (7), 𝑣𝑖

𝑎  

and 𝑑𝑖 are relevant to θ𝑖(𝑡1) − θ𝑖(𝑡2) which is independent of the phone orientation. 

                                

  



 

 

 

Chapter V: Implementation and In-field Testing 

5.1. Implementation Setup 
 

 
Figure 12. In-field testing setup. 

Implementation: As a proof-of-concept implementation, we develop the prototype of Acoussist 

on four Tronsmart portable speakers, around 40 each, and three Android smartphones, Google 

Pixel XL, Galaxy S8 and Nexus 2. Four vehicles, Ford Focus 2014, Ford escape 2019, Toyota 

corolla 2017 and Honda Accord 2016, are used in the testing. A speaker is mounted in front of 

the vehicle, shown in Figure 12(a), laying the pre-loaded chirps that sweep from 17 KHz to 19 

KHz at 69.3 dB. We use the two built-in microphones at the smartphones to receive signals. An 

Android app is developed to process received signals and generate alarm when needed. We use 

NDK [35]  to implement the STFT operations, and GNU Scientific Library (GSL) for other 

mathematical operations in our design. 

 

In-field testing setup: All testings are conducted at the campus parking lot as shown in Figure 

12(b) during weekends when the space is relatively empty. A pedestrian stands at the end of the 

crosswalk and records the performance. In each testing round, a driver accelerates the vehicle to a 

target speed. Meanwhile, the pedestrian activates the app to sense the environment. If no alarm is 

generated, the pedestrian waves a flag, indicating the action of street crossing. Otherwise, she 

keeps the flag down, indicating waiting at the curb. Upon noticing a waving flag, the driver takes 

reaction and stops the car. The reason we use flag signals instead of having a pedestrian physically 

proceed to the crosswalk is for safety consideration. Besides, as the driver needs be signaled with 

the pedestrian's action of street crossing by waving a flag, the pedestrian cannot be simulated by a 

stand mounted with a smartphone. A test is viewed success, if a) the flag is not waved, since a 

potential collision is detected, or b) the flag is waved while the vehicle stops completely before 

reaching the crosswalk. 

 

Acoussist requires users to hold their smartphones steady for about 1 second to have an accurate 

detection of oncoming vehicles. It is also the time duration between the time point that a user 

activates the app and the time point that he/she decides to wave the flag or not. Beyond the 1 

second time limit, the user can choose to wave the flag at any time, as long as no alert is observed. 

The 1 second is attributed from two aspects, the duration of two consecutive measures to derive 

the v-p distance (δ𝑡 =500 ms) and the processing delay (the 90-percentile value of 𝑡𝑑𝑙 =220.7 ms 

as shown in Section 5.2). 

 

Evaluation metrics: The performance of our system is evaluated via the following metrics: 

ranging distance, warning distance, miss detection ratio (MDR), and false alarm ratio (FAR). 

Particularly, ranging distance is the v-p distance at which the app is able to measure this value for 



 

 

 

the first time. It implies the largest detectable range of our system. Warning distance is the v-p 

distance at which the pedestrian safety condition (8) is violated for the first time. MDR is the 

probability that a vehicle which has violated (8) but not detected. FAR is the probability that a 

vehicle satisfies (8) but wrongly reported. Traffic cones are placed along the vehicle trajectory. To 

measure the ranging distance, the pedestrian records the parking slot number, where the pedestrian 

stands denotes the first slot. With the assistance of traffic cones, the v-p distance becomes 

measurable. Then, the ranging distance is approximated by multiplying the slot number with the 

width of each slot, 10.7 ft in our case. Warning distance is obtained similarly. 

 

5.2. Micro Benchmark 
 

Impact of parameter settings: We first examine the impact of two most crucial parameters of 

our system, Δ𝑡 and δ𝑡. Recall that Δ𝑡 is the STFT window size and δ𝑡 is the time interval between 

two consecutive measures. Figure 13(a) shows the accuracy performance of Acoussist with various 

Δ𝑡. The best performance 93.6% exists when Δ𝑡 =  2048. As discussed in Section 4.1, the value 

of Δ𝑡 strikes a trade-off balance between frequency resolution Δ𝑓 and time resolution Δ𝑡 of STFT. 

 

Figure 13(b) shows the accuracy performance with various δ𝑡. The best performance is achieved 

for δ𝑡 = 500 ms. On one hand, a large δ𝑡  and thus an apparent difference between θ𝑖(𝑡1) and 

θ𝑖(𝑡2) is beneficial for deriving an accurate 𝑣𝑖
𝑎 . On the other hand, it inevitably leads to a long 

processing delay which impacts the detection accuracy. Δ𝑡 and δ𝑡 are set to 2048 and 500 ms, 

respectively, in the rest experiments. 

 
Figure 13. Impact of parameters. 

 
Figure 14. Accuracy of measurements. 

 
Figure 15. The received signal SNR with different v-p 

distance. 

 
Figure 16. Instant power readings. 

Measurement performance of motion parameters: Figure 14 depicts the distribution of 

measurement errors of velocity 𝑣𝑖
𝑎  and v-p distance 𝑑𝑖. The measurement error is defined as the 

difference between measures and the ground truth. Here, the ground truth of 𝑣𝑖
𝑎  and 𝑑𝑖 is set to 25 

mph and 120 ft, respectively. We observe that 90% of errors for these parameters are within 2.4 

mph and 11.8 ft, respectively, which are acceptable for implementation. 
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Table 1. Detection performance of different devices. 

 

Table 2. Impact of phone orientation. 

 
 

Ranging distance and warning distance: Figure 19(a) evaluates the ranging distance of our 

system with respect to the vehicle speed. The ranging distance decreases from 208.1 ft to 165.5 ft 

on average when the speed changes from 5 mph to 45 mph. This is because the vehicle travels a 

longer distance at a higher speed given δ𝑡 and thus perceives a shorter v-p distance when this value 

is first obtained. As shown in Figure 19(b), the warning distance increases almost linearly as the 

speed grows from 5 mph to 30 mph. It reaches 175.2 ft when 𝑣𝑖
𝑎 = 30 mph. The result meets our 

expectation; when a vehicle moves faster, the driver needs longer distance to react and stops the 

vehicle which corresponds to a larger warning distance. However, as the speed continues to 

increase, the warning distance experiences slight decrease. This is because the warning distance is 

capped by the ranging distance. As the latter decreases, it also brings down the former. 

 

Impact of different devices: Figure 15 shows the smartphone’s received SNRs of chirps with 

frequency 17 KHz-19 KHz at different v-p distances. Three devices exhibit different sensitivity 

responding to high-frequency signals. Particularly, the detectable threshold, defined as the 

maximum distance within which the received signal are perceivable from the background noise, is 

237.6 ft, 221.1 ft and 207.9 ft for Google Pixel, Galaxy S8, and Nexus 2, respectively. They bring 

about various detection performances as shown in Table 1. Combining the results of Figure 15 and 

Table 1, we observe a positive correlation between a device’s detectable threshold and its detection 

accuracy, and Pixel XL has the best performance among the three. 

 

Impact of phone orientation: We also examine if the phone orientation in usage impacts the 

detection performance. We test four different positions, the combinations of the screen facing 

above/aside and the head pointing up/down, as shown in Table 2. We find that the ranging distance 

and the warning distance are almost the same for all four positions. Thus, the performance of 

Acoussist is independent of how the pedestrian holds the phone. It meets our discussion in Section 

4.4. 

 
Figure 17. Impact of the background noise. 

Impact of background noise: Among commonly observed background noise in streets, truck 

sound is typically the most powerful one. We thus evaluate its impact to the performance of 



 

 

 

Acoussist. First of all, as shown in Figure 6(e), the signal frequency components are mainly 

concentrated on the lower-end of the frequency. Particularly, 88.7% of them reside lower than 10 

KHz. Recall that the acoustic chirp signal used by Acoussist ranges between 17 KHz and 19 KHz. 

Thus, there is a clear gap between the truck sound and the acoustic chirp signal. In our design, a 

high-pass filter, with a cutting frequency of 10 KHz, is then applied to get rid of most background 

noise, including traffic noise, music noise, speech noise, construction noise, as well as truck sound.  

 

On the other hand, we notice that truck noise does have frequency components above 10 KHz. To 

examine its impact to f-t analysis of our system, we first add truck sound as background noise to 

the chirp signals recorded at different distances by using Matlab audio toolbox [72]. Then SNR is 

measured after passing the received signal through all noise removal modules. The relation of SNR 

versus the v-p distance is plotted in Figure 17(a). As a comparison, we also show the SNR without 

truck noise. We observe that the two curves are quite similar to each other, except when the 

pedestrian is very close to the noise source, i.e., within 25 ft. We further depict in Figure 17(b)-(d) 

the CDF of warning distance under different vehicle speeds, from 10 mph to 30 mph. Recall that 

warning distance is the v-p distance at which the alert is triggered. Take Figure 17(b) as an 

illustration. When the vehicle speed is at 10 mph, all alerts are generated when the v-p distance is 

between 40.6 ft and 48.7 ft. Thus, vehicles are all detected even at distances much longer than 25 

ft away from the pedestrian. Combining the observations above, we can infer that a truck will 

trigger the alert even it is larger than 25 ft away from the pedestrian. Besides, its detection 

performance should be similar to regular vehicles. If a truck is within 25 ft from the pedestrian, its 

presence can be easily picked up by human ears. In this scenario, the visually impaired pedestrians 

can simply rely on their hearings to detect the potential hazard. 

 

Energy consumption: A dedicated hardware, Monsoon power monitor [73], is applied to measure 

the energy consumption of mobile phones for running our app. During the measurement, we keep 

other components, e.g., WiFi and Bluetooth, offline. Figure 16 shows the instant power reading 

via the power monitor when executing one detection. We clearly specify the part dedicated to each 

module. We can tell that the measurement of relative velocity and DoA consumes a larger amount 

of power among all modules, which is about 2967.2 mW and 2656.8 mW on average, separately. 

As a note, the average power consumption of some common smartphone tasks, such as video call, 

map service, and web browsing take 3351.6 mW, 2642.8 mW, and 1732.7 mW, respectively. 

Besides, our app is only activated when a pedestrian tends to cross streets and thus offline most of 

the time. Thus, the power consumption of our app is practically acceptable. 

 

Processing latency: Figure 18(a) gives the stacked computation time of each system module. The 

module for DoA measurement incurs the largest delay, which is about 137.2 ms on average. This 

is because it involves an exhaustive search for the solution of the MGCC function. Figure 18(b) 

further illustrates the cumulative distribution function (CDF) of the total processing latency of the 

app. The average value is 186.3ms, with 90% of measurements lower than 220.7 ms. We thus 

instantiate 𝑡𝑑𝑙 with 220.7 ms for the implementation (8). We also believe that by leveraging the 

parallelization, we can further bring down the processing latency. 



 

 

 

 
Figure 18. Processing latency. 

Table 3. Detection performance when a vehicle is at different speeds. 

 
 

5.3. System Benchmark 

 

Impact of vehicle speeds: Table 3 gives the detection accuracy of Acoussist toward a vehicle in 

a wider range of speeds. Interestingly, both MDR and FAR experience significant decrease when 

the speed increases from 5 mph to 45 mph. This is because a higher speed generates a larger slope 

of the t-f sweep line as revealed in (3). As a result, the difference between 𝑓(𝑡 + Δ𝑡) and 𝑓(𝑡) will 

be more apparent to tolerate errors caused by insufficient frequency resolution Δ𝑓. Therefore, 

when a target vehicle moves in a higher speed, its t-f profile tends to more accurate which leads to 

a better detection accuracy. MDR grows as the speed continues to increase from 30 mph to 45 

mph. This is because the ranging distance becomes close or even shorter than the the warning 

distance when a vehicle is at a high speed. As a result, some hazard situations are missed in the 

detection. 

 
Table 4. Detection performance with the presence of multiple vehicles. 

 
 

Impact of multiple vehicles: We examine the detection performance of Acoussist with the 

presence of four vehicles in Table 4. Compared with Table 3, we notice that FAR slightly increases 

with the presence of more cars. This is because a false alarm is generated by the system when any 

of the four vehicles is falsely reported to incur a potential collision. In contrast, MDR becomes 

smaller when there are more vehicles. This is because a collision is correctly forecast, when any 

one of the vehicles triggers the alarm. While FAR experiences a slight increase, it does not impact 

the performance of Acoussist much. A visually impaired pedestrian uses Acoussist to double 

confirm the situation when sensing a clear street with hearing. Thus, MDR is more crucial than 

FAR in practical usage. 



 

 

 

 

Figure 20 shows the ranging distance and warning distance when vehicles move in the 

same/opposite direction(s). While the average measures are closely the same, the variance 

associated with opposite directions is smaller than the same direction. This is because t-f sweep 

lines of the four vehicles are better separated and easier to extract in the former case. 

 

 
Figure 19. Impact of vehicle speeds. 

 
Figure 20. Impact of multiple vehicles. 

 

Impact of vehicles in asynchronous speeds: In the experiment, two vehicles move toward the 

same direction at asynchronous speeds of  𝑣1and 𝑣2, separately. We find in Table 5 that the ranging 

distance is mainly determined by min(𝑣1, 𝑣2) , while the warning distance is determined by 

max(𝑣1, 𝑣2) . For example, the warning distance under the setting (𝑣1 = 10𝑚𝑝ℎ, 𝑣2 =
25𝑚𝑝ℎ) equals to 161.45 ± 15.21𝑓𝑡 , which is similar to the one measured under (𝑣1 =
25𝑚𝑝ℎ, 𝑣2 = 15𝑚𝑝ℎ), i.e., 158.82 ± 13.36𝑓𝑡. This is because the high-speed vehicle is more 

easily to break the safety condition. In terms of ranging distance, the low-speed vehicle covers a 

shorter distance within Acoussist's detection/processing delay. Since the ranging distance is the v-

p distance when vehicles are first detected, it is determined by min(𝑣1, 𝑣2).   

 
Table 5. Detection performance when two vehicles are in asynchronous speeds. 

 

 
Figure 21. Impact of nearby objects. 

 

Impact of nearby objects:To evaluate the impact of nearby objects, we place a second vehicle to 

partially block the line of sight between the target vehicle and the pedestrian (as shown in Figure 



 

 

 

21(a)). The ranging distance and the warning distance toward the target vehicle is shown in Figure 

21(b) and 21(c), respectively. The trend of these two distances with respect to the vehicle speed is 

very similar to that in Figure 19(a) and 19(b), the performance without any blocking object. 

However, the two distances exhibit a larger variance with the existence of a blocking object. This 

is because the blocking object absorbs a portion of energy of chirps in the LoS path and thus 

slightly impacts the detection performance. 

 

 

Impact of time/weather of usage: Table 6 shows the detection accuracy of Acoussist at different 

time of a day. The performance is relatively stable. Acoussist performs well at evenings when 

there are typically lack of visible light. WalkSafe [117], rely on back camera of mobile phones to 

detect hazard vehicles. Thus, their performance is largely impacted by the time of usage. Table 7 

further compares the detection performance under different weather conditions. We notice that 

both MDR and FAR experience slight increase in rainy days due to higher loss of acoustic signals 

when propagating in saturated air. 

 
Table 6. Detection performance at different time of a day. 

 
Table 7. Detection performance under different weather conditions. 

 
  

  



 

 

 

Chapter VI: User Study 

Procedures: To evaluate the effectiveness and usability of Acoussist from the perspective of 

visually impaired people, we conduct user study with this demographic group. For recruitment, we 

advertised our research study through a local mailing list of people with visual impairments. Six 

volunteers are invited, either totally blind or can barely see to test the system. Their demographics 

are provided in Table 8. At the end of experiments, they are asked to fill the questionnaire which 

serves as the basis of our user study. 

 
Table 8. Demographic information of vision impaired participants. 

ID P1 P2 P3 P4 P5 P6 

Gender F F M F M F 

Age 65 50 46 25 32 58 

Eyesight Blind Blind Blind Barely see Barely see Blind 

 

Before the experiment, a short training session (15 - 30 minutes) is organized. An overview of the 

study and the usage instructions of Acoussist are presented. Volunteers are left with sufficient time 

to get familiar with the Acoussist app. The field testing is conducted at the campus parking lot as 

shown in Figure 12(b) during weekends when the space is relatively empty. The pedestrian (i.e., 

volunteer) stands at the end of the crosswalk and records the performance. In each testing round, 

a driver accelerates the vehicle to a target speed. Meanwhile, the pedestrian activates the app to 

sense the environment. If no alert is generated, the pedestrian waves a flag, indicating the action 

of street crossing. Otherwise, she keeps the flag down, indicating waiting at the curb. Upon 

noticing a waving flag, the driver takes reaction and stops the car. A test is viewed success, if a) 

the flag is not waved, since a potential collision is detected, or b) the flag is waved while the vehicle 

stops completely before reaching the crosswalk. As the pedestrian cannot observe the test result 

by him/herself, the result is informed by a second volunteer, i.e., a student researcher in this project, 

with normal sight vision who stands right next to the visually impaired pedestrian. Besides, the 

second volunteer watches out for the visually impaired pedestrian’s safety in case of any 

unforeseen situation. To examine which alert modality is better perceived by the visually impaired 

pedestrians, we have the smartphone to either emit beeping sound or vibration once a potential 

hazard is detected. 

 

Experiment results: Table 9 shows the detection accuracy of Acoussist when used by visually 

impaired pedestrians. First of all, both MDR and FAR experience significant decrease when the 

speed increases from 5 mph to 30 mph. This trend coincides with the result of Table 3. derived 

from experiments involving normal users. Besides, we are not able to identify noticeable 

differences on the detection accuracy between the two groups     of people. The main reason is that 

Acoussist involves rather limited user operation, simply turning on the app, during the entire 

process. Thus, its performance is irrelevant to who the user is. 

 
Table 9. Acoussist detection performances when used by visually impaired pedestrians. 

 



 

 

 

 
Table 10. Survey results (1: strongly disagree, 3: neutral, 5: strongly agree). 

No. Questions P1 P2 P3 P4 P5 P6 Mean Variance 

Q1 
Traffic sound is insufficient to make 

all the judgements needed to cross streets safely. 
4 5 3 5 4 4 4.2 0.6 

Q2 
Acoussist provides additional information to make 

judgements needed to cross streets safely. 
5 4 3 3 4 4 3.8 0.6 

Q3 
Acoussist helps to make better decisions 

to cross streets safely. 
4 4 3 4 3 5 3.8 0.6 

Q4 False alarm produced by Acoussist discourages me to adopt it. 2 2 2 1 3 2 2 0.4 

Q5 I prefer vibration than beeping sound as alerts. 4 5 4 4 3 4 4 0.4 

Q6 
I prefer to receive more information of 

surrounding traffic via Acoussist to cross streets safely. 
3 4 2 3 2 3 2.8 0.6 

Q7 Acoussist is easy to use. 5 4 5 3 5 4 4.3 0.7 

Q8 I am willing to adopt Acoussist during daily commutes. 3 4 5 3 5 4 4 0.8 

 

Survey results: After the experiment, questionnaires are distributed among volunteers. They are 

asked to rate Acoussist from the perspectives of effectiveness and usability. Questions are list in 

Table 10. From 5-point Likert scale (1 = strongly disagree, 3 = neutral, 5 = strongly agree), 

volunteers pick a point that they deem proper. Survey results are shown in Table 10.  

 

Almost everyone agrees that the sound of traffic is no longer sufficient to make all the 

determinations and judgments needed to cross streets safely (Q1). For example, P2 and P6 

mentioned that these situations take place when there is loud background noise, such as sound of 

construction and rain. They also mentioned that some “quiet vehicles”, such as electrical/hybrid 

vehicles, cannot be heard until they are too close. In the response to Q2, 4 out of 6 agree that 

Acoussist provides additional information to cross streets safely. P2 and P5 specifically mentioned 

that they feel more informed about the surrounding traffic conditions and less panic when making 

a decision. The survey result of Q3 shows that Acoussist helps the visually impaired to make better 

decisions to cross streets safely. P4 and P6 said that choosing the right timing to cross a street can 

be hard, as hearing an approaching vehicle is one thing but estimating its distance and speed is 

another. Acoussist is able to effectively alleviate this detection load. When volunteers are asked 

by Q4 of if false alarm produced by Acoussist discourages them from using it, 5 out of 6 said no 

while 1 held a neutral opinion. Some of them expressed that they are unlikely to fully rely on 

Acoussist to decide when to cross streets. Instead, it can be treated as an assistive tool for their 

judgement, especially that Acoussist is merely a prototype rather than a commercial product. Q5-

Q8 are designed to evaluate the usability of Acoussist. In response to Q5, most of the volunteers 

prefer vibration over beeping sound as the alert modality. This is because beeping sound can cause 

interference to their own hearings. In the response of Q6, there is no clear preference regarding 

whether to get more traffic information, such as how many detected vehicles nearby and their 

distances, out of Acoussist in addition to the current collision avoidance alert. Some of them said 

more information would distract them from sensing the traffic condition, while others feel 

additional information help to make more accurate and timely decisions. In Q7, almost everyone 

agrees that Acoussist is easy to use. In Q8, 4 out of 6 expressed their willingness to adopt Acoussist 

for daily commute. 

 



 

 

 

Open questions: After the in-field experiments, the visually impaired participants are encouraged 

to share their usage experience. They are also provided with the opportunity to discuss with each 

other and exchange their thoughts. They are asked by the following two questions. 

“Q1: What is the possible role of Acoussist in your daily commute? ” 

“Q2: What are possible aspects to improve Acoussist?” 

 

In response to Q1, three participants mentioned that Acoussist should be used as a supplemental 

method for estimating the surrounding traffic condition in addition to their hearings. If they intend 

to cross an uncontrolled street, they will use Acoussist to double-confirm their judgement. P3 

suggested that Acoussist should be used   in a conservative way. If he hears any oncoming vehicle, 

he would wait to hear that the vehicle begins to slow down and eventually comes to full stop before 

crossing the street, even if Acoussist produces a safety sign at the beginning. After discussion with 

P3, we find that such situation happens when the pedestrian has a keen sense of hearing to detect 

a vehicle far away. The vehicle does not trigger the alert in the first a few seconds because the 

driver is deemed to have sufficient time to spot the pedestrian and stop the car, given its instant 

distance and moving speed. All volunteers agreed that Acoussist should be positioned as an 

assistive tool that supplements the existing assistive methods, including accessible pedestrian 

signals and dog guidance. Due to the nature of complexity of street traffics, such as distracted 

drivers or other unforeseen accidents, it is desirable to provide with them comprehensive 

information of surrounding traffics that assist them to make accurate judgement. 

 

In response to Q2, all six participants viewed Acoussist as a helpful tool that enhances their 

mobility experiences outdoors. They also provided valuable comments on its potential 

improvements. Based on our thematic grouping of their comments, the following themes emerged. 

Notify the driver: P3, P4, and P6 agreed that the drivers should be notified if their vehicles present 

potential hazard to pedestrians nearby. The alert may allow drivers to react quickly, for example, 

slowing down the car. Alert modalities: P2 and P5 suggested to provide options of different alert 

modalities, e.g., vibration, beeping sound, and human voice. Besides, Acoussist only provides 

binary detection results. P1 and P6 suggested to include more diverse information, such as the 

number of oncoming vehicles and their v-p distances. These information assists with better traffic 

condition estimation. Remove the speaker: Some participants mentioned that the usability of the 

system would be improved if the installment   of external speakers is no longer needed. For 

example, P5 noted “people may be lazy or reluctant to install the speakers.” In future work, we 

plan to explore the Type-I ranging and utilize reflected signals to perform nearby vehicle detection. 

 

 

 

 

  



 

 

 

Chapter VII: Related Work 

7.1. Pedestrian Safety  

 

There is a growing interest in using V2X [31, 105] for pedestrian safety. The idea is to exchange 

positioning information between vehicles and pedestrians for collision avoidance. In a pedestrian 

safety project initiated    by Honda [121], they use the dedicated short-range communications 

(DSRC) with the basis of IEEE 802.11p   as the module for V2X communications. However, so 

far, no existing commercial smartphone is installed with IEEE 802.11p module. There neither 

exists any clear road map regarding its implementation. In parallel with  the DSRC-based 

approach, WiFi is an alternative channel for information exchange between vehicles and 

pedestrians [20, 47, 65]. However, the WiFi association involved therein introduces extra 

processing delay and load to the vehicle, which prevents it from large-scale deployment. There are 

several mobile apps, such as WalkSafe [117], which use the back camera of the mobile phone to 

detect potentially fatal collisions. However, its performance is subject to lightening conditions. 

 

7.2. Collision Avoidance Systems 

 

A collision avoidance system (CAS) is an automobile safety system designed to prevent or reduce 

the severity  of a collision. Since the demonstration of the first modern version in 1995, it has 

attracted massive attention in the past decades. The most common approaches use radar [68, 86], 

laser [22, 77, 78], LiDAR [4, 28, 92] and sonar [56, 57] to detect an imminent crash. Nonetheless, 

CAS is primarily designed for driver safety. It is unclear whether it can be directly applied to our 

problem. Besides, some of these solutions, such as laser and LiDAR, require the equipment of 

expensive specialized sensors, which are impractical to install in smartphones. For radar and sonar, 

as they belong to type-I/II ranging when employed for CAS, their techniques are different from 

ours. 

 

7.3. Parameter Estimation of Moving Targets 

 

The estimation of target movement parameters, including speed and DoA, exploits the acoustic 

energy radiated by a target for its detection and tracking. 

 

Speed estimation: Doppler models have been widely used in previous literature that characterize 

the relation between a target’s instant moving speed and the frequency shift incurred at the 

observer [26, 34, 49, 50, 89]. These models work well for single-target scenarios or multiple targets 

that emit heterogeneous signals. Specifically, to perform multi-source speed estimation [26, 34, 

49] adopt signature signal modeling. Central to their success  is to accurately identify each target, 

for example, by analyzing engine humming sounds from vessels or tire noises made by vehicles. 

With targets’ pre-measured signature signals, source separation models like maximal likelihood 

approach [12, 69] and nonlinear least squares method [66] are applied to estimate each target’s 

speed. However, to capture a target’s sound, these designs rely on ground-mounted sensors; the 

estimation is conducted when the target passes through them closely, say 3-7 ft, which is too short 

for vehicle collision avoidance. Besides, the requirement of pre-measurement for each vehicle’s 

signal signature is impractical. More importantly, since vehicles emit homogeneous acoustic chirps 

in our design, the above-mentioned models are inapplicable. 



 

 

 

 

DoA estimation: Another research that is relevant to this work is DoA  estimation, a task of 

identifying    the relative position of sound sources with respect to the microphone. It forms an 

integral part of speech enhancement [106], multichannel sound source separation [46] and spatial 

audio coding [79]. Popular approaches to DoA estimation are based on time-delay-of-arrival 

(TDoA) [17, 25, 52], the steered response power (SRP) [18, 45, 109], the generic cross correlation 

with phase transform (GCC-PHAT) [15, 54, 58], or on subspace methods such as multiple signal 

classification [55, 96]. While these approaches can estimate DoAs from all acoustic sources, they 

are mainly for single-source tracking. Clearly, they are inapplicable to Acoussist. To conduct 

multi-source tracking, the key ingredient is to address the data association problem. For this, 

probabilistic models like Gaussian mixture model [59, 128] and Laplacian mixture model [16] are 

employed over the signals’ t-f profile to compute the DoA and map them to each source by a 

histogram or clustering. These methods require the inter-mic distance smaller than half wavelength 

of acoustic signals to avoid the spatial aliasing effect. It is practical in generic scenarios where mic 

arrays can be arbitrarily arranged. In our system, two mics are fixed in smartphones. Besides, the 

longest wavelength is about 2cm ( 340m/s ). Its halve, i.e., 1cm, is apparently smaller than the 

inter-mic distance for many smartphones, e.g., the ones with one mic located on bottom and the 

other on top. 

 

7.4. Assistive Navigation Technologies 

 

To improve blind people’s navigation experience, researchers have augmented normal white canes 

with sensors to acquire conditions of surrounding environments, especially the obstacles that are 

out of the reach of a normal cane. By detecting and analyzing the information about obstacles, 

such as distance [40, 70, 98, 126] and shape [88, 100, 130], the smart cane decides if the 

environment is hazardous to users; if so, it provides audio or vibration feedback. More obstacle 

avoidance and navigation systems are built with various sensing modalities, such as cameras [10, 

85, 107, 108], ultrasonic [32, 83, 104, 112], RF sensing [3, 5, 39, 94], depth sensing [48, 61, 90, 

99], or fusion of several of them [9, 53, 62]. However, the ranging distance of these systems are 

mostly bounded within 30 feet. Besides, while they are able to detect static or slow moving 

obstacles, e.g., walls, tables, trees, and other pedestrians nearby, the detection and avoidance of 

collisions with moving vehicles in a relatively high speed, is still unexplored in the literature. 

 

There are also other related works aiming to improve travel safety for the visually impaired. For 

example, [43] collects more rich information of the environmental conditions to assist the blind 

pedestrians in making appropriate movement decisions via crowdsourcing. Some others customize 

the traffic lights [7, 74] or crosswalk infrastructures [44] to provide street-crossing guidance. 

Another line of research [38, 97, 120, 129] builds simulated outdoor environments to help blind 

pedestrians gain prior navigation experiences in new locations. [82] models the evolution of user 

expertise throughout repetitions of a navigation task with a smartphone-based turn-by-turn 

navigation guidance interface. [42] examines the information needs of visually impaired 

pedestrians at intersections, which may present a specific cause of stress when navigating in 

unfamiliar locations. However, none of them is about assisting blind pedestrians to cross 

uncontrolled streets. It is worth mentioning a prior work [95] that shares the author’s experience 

of teaching the blind how to assess when it is safe to cross uncontrolled streets. For the first time, 

we try to tackle this challenge via novel acoustic sensing techniques.  



 

 

 

Chapter VIII: Discussion 

 

Impact of ultrasonic signals to animals: Acoussist operates over the frequency between 17 KHz 

and 19 KHz, which falls into the hearing range of some animals, such as dogs and bats. While 

ultrasonic sound with low or medium transmission power might impact animals to some extent, 

research shows that only extremely loud noise (≥ 85 dB) is harmful to animals [80, 111]. In our 

system, commercial portable speakers are employed running at 69.3 dB. While the emitted 

ultrasonic chirps are not harmful, they are perceptible by some animals when they are nearby. To 

roughly estimate the perceptible range, we measure the chirp sound with respect to the speaker-

receiver distance. The result shows that the chirp sound drops to 30 dB, when the distance is about 

4.6 meters. As a reference, whisper is typically at the level of 30 dB, while human conversations 

are at 60 dB [30]. Thus, we claim that Acoussist would cause rather limited interference to animal’s 

hearings even with the existence of multiple opt-in vehicles nearby, as close as 4.6 meters. Besides, 

ultrasonic sensing has been widely used in many application scenarios, such as collision avoidance 

detection on autonomous vehicles and underwater navigation. More recently, acoustic sensing has 

found its novel applications in biometric sensing [87], acoustic imaging [71], and indoor 

localization [27]. Our work can be treated as another application of acoustic sensing. Lastly, the 

authors do plan to work with researchers from the Biology Department to carry out formal study 

regarding the potential impact of our system to commonly found mammals, such as dogs and cats. 

 

Usage requirements: Acoussist requires users to hold their smartphones steady for about 1 second 

to have an accurate detection of oncoming vehicles. This is because two measures of the vehicle’s 

instant velocities at two time instances 𝑡1 and 𝑡2 are needed to derive the v-p distance. A too short  
|𝑡2 − 𝑡1| will result in low accuracy of measuring the v-p distance, while a too large value will 

cause long waiting duration and postpone the collision detection. To strive a balance between these 

two, a proper value of |𝑡2 − 𝑡1| is critical. During the testing, the best overall performance exists 

when |𝑡2 − 𝑡1|  is 500ms. Besides, we have also discussed in Section 5.2 that the 90 percentile 

signal processing delay of our system is 220.7 ms. By jointly considering these two factors, users 

need to hold the smartphone for about 1 second to receive a detection result. While we believe this 

requirement is practical to execute for most of human beings, it would be more convenient without 

such a restriction. We plan to further look into it in our future study. It is noteworthy that our 

system does not impose any requirement on the position/orientation of the phone during usage. 

 

Applicable scenarios: In the experiment, we find that vehicle’s speed has a direct impact on the 

detection performance of Acoussist. Specifically, as the speed increases from 5 mph to 45 mph, 

MDR first experiences a drop and then increase, while FAR keeps on decreasing. The higher a 

vehicle’s speed is, the higher chance it is miss-detected, the lower chance a false alarm is generated 

though. Since MDR is more critical than FAR in our case, Acoussist is deemed to work better to 

detect low-/medium-speed traffic. Due the imperfect performance, we do not intend to replace 

human judgement with the detection result of Acoussist. Instead, it is designed as an assistive tool 

that provides an added layer of protection to the visually impaired when they sense a clear street 

to cross using hearing. Acoussist is designed to use at uncontrolled crosswalks existing in 

residential communities, local streets, and suburban areas, where there are common needs from 

the visually impaired for daily activities and commute. To extend the usage scenarios of our 



 

 

 

system, we plan to investigate how to improve detection accuracy especially for high-speed 

vehicles. More sophisticated ranging and estimation algorithms will be developed. 

 

Feedback design: In the user study that involves six visually impaired volunteers, we tested two 

alert modalities, vibration and beeping sound. Smartphones generated either one of the two kinds 

of alert signals once any potential collision is detected. After the experiments, volunteers are asked 

for their preference over these two approaches. The result shows that most of them, 5 out of 6, 

prefer vibration over beeping sound, as the latter will interfere their hearing-based judgement to 

some extent. In the real application, Acoussist can set vibration as the alert modality by default, 

while leave users the freedom to switch to beeping sound in the setting menu. So far, Acoussist 

only provides binary information to users regarding whether a potential collision is detected or 

not. In the user study, volunteers are asked if they prefer to receive additional information, such as 

how many detected vehicles nearby and their distances. No consensus is reached; some of them 

said more information would distract them from sensing the traffic condition with hearing, while 

others feel additional information help to make more accurate and timely decisions. We plan to 

implement the optional function of additional information provisioning via Acoussist and carry out 

a wider user study regarding its feasibility. 

  



 

 

 

Chapter Ⅸ: Conclusion 

In this project, we propose Acoussist, a theoretical grounded acoustic ranging based system that 

assists visually impaired pedestrians to cross uncontrolled crosswalks. The key novelty of 

Acoussist lies in the idea of analyzing the t-f sweep line embedded in the received signals to 

estimate the relative velocity of each vehicle even with the presence of multiple of them who all 

play homogeneous acoustic chirps. With this basis, we successfully address the association 

ambiguity issue by proposing MGCC when measuring vehicle’s DoA. We explore the geometric 

relations among system entities to derive important vehicle movement parameters, such as vehicle 

velocity and v-p distance. From a generalized point of view, we study a type-III homogeneous 

multi-source ranging problem that has not been investigated before. The theoretical results and 

technical design may shed light to future studies on this topic. As another contribution of this work, 

we implement Acoussist using COTS portable speakers and smartphones. Extensive in-field 

experiments show that the detection accuracy of our system can reach 93.3%. 

Acoussist is designed as an assisting tool that provides an added layer of protection to the visually 

impaired when they sense a clear street to cross using hearing. Due to the same reason, the 

functionality of Acoussist does not require all vehicles to participate, which is also impractical in 

reality. Still, Acoussist can effectively detect opt-in vehicles and alert the pedestrian their presence. 

In a worst case that no vehicle in the pedestrian’s vicinity participates the program, it degrades to 

the conventional hearing-based judgment scenario. Therefore, Acoussist will not perform worse 

than the current solution. 
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